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1. Introduction

Let L/Q be a Galois extension with group S3. Let H = (Lλ(S3))S3

be the Greither-Pareigis Hopf algebra determined by the regular
subgroup λ(S3) ≤ Perm(S3) normalized by λ(S3). In this talk we
prove the following proposition.

Proposition 1.
H ∼= Q×Q×Mat2(Q)

if and only if L is the splitting field of an irreducible cubic
x3 + bx − c where either b = 0, or − 1

bD is a square in Q
(D = −4b3 − 27c2 is the discriminant).
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2. Proof of Proposition 1

We first need a lemma.

Lemma 2. Let L/Q be a Galois extension with group S3. Let
H = (Lλ(S3))S3 be the Greither-Pareigis Hopf algebra determined
by the regular subgroup λ(S3). If H contains a non-trivial nilpotent
element of index 2, then L is the splitting field of an irreducible
cubic x3 + bx − c where either b = 0, or − 1

bD is a square in Q.

Proof. By [1, Example 6.12], H consists of elements of the form

h = a0 + a1σ + τ(a1)σ2 + b0τ + σ(b0)τσ + σ2(b0)τσ2,

where a0 ∈ Q, a1 ∈ L〈σ〉, and b0 ∈ L〈τ〉.
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By direct computation,

h2 = U + Vσ + Wσ2 + X τ + Y τσ + Zτσ2,

where

U = a20 + 2a1τ(a1) + n

V = 2a0a1 + τ(a21) + m

W = 2a0τ(a1) + a21 + m

X = 2a0b0 + (a1 + τ(a1))σ(b0) + (a1 + τ(a1))σ2(b0)

Y = 2a0σ(b0) + (a1 + τ(a1))b0 + (a1 + τ(a1))σ2(b0)

Z = 2a0σ
2(b0) + (a1 + τ(a1))b0 + (a1 + τ(a1))σ(b0),

with

m = b0σ(b0) + σ(b0)σ2(b0) + b0σ
2(b0),

n = b20 + σ(b20) + σ2(b20),

2m + n = (b0 + σ(b0) + σ2(b0))2.
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Now suppose that H contains an element

h = a0 + a1σ + τ(a1)σ2 + b0τ + σ(b0)τσ + σ2(b0)τσ2,

with h2 = 0, h 6= 0, for some a0 ∈ Q, a1 ∈ L〈σ〉, and b0 ∈ L〈τ〉.
Since H is flat over Q and {1, σ, σ2, τ, τσ, τσ2} is an L-basis for
LS3, U = V = W = X = Y = Z = 0.

Case I. a0 ∈ Q, a1 ∈ L〈σ〉, b0 ∈ Q. In this case, we have two
possibilites: a1 ∈ Q or a1 ∈ L〈σ〉\Q.

(i) a1 ∈ Q. From U = 0, we obtain a20 + 2a21 + 3b20 = 0, and so,
a0 = a1 = b0 = 0. Thus h = 0, and so, (i) is not possible.
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(ii) a1 ∈ L〈σ〉\Q. From U = V = 0, we obtain

a20 + 2a1τ(a1) + 3b20 = 0

2a0a1 + τ(a21) + 3b20 = 0.

Since [L〈σ〉 : Q] = 2 and a1 ∈ L〈σ〉\Q, a1 = v + w
√
d , where

v ,w , d ∈ Q with w 6= 0, d 6= 0. We have τ(
√
d) = −

√
d .

Now, a20 + 2a1τ(a1) = 2a0a1 + τ(a21), hence

a20 + 2(v + w
√
d)(v − w

√
d) = 2a0(v + w

√
d) + (v − w

√
d)2,

thus

a20 + 2v2 − 2w2d = 2a0v + 2a0w
√
d + v2 − 2vw

√
d + w2d ,

and so, 2a0w = 2vw , and a20 + 2v2 − 2w2d = 2a0v + v2 + w2d .
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Consequently, a0 = v , and so, 3w2d = 0, which is not possible. So
(ii) cannot happen.

Case II. a0 ∈ Q, a1 ∈ L〈σ〉, b0 ∈ L〈τ〉\Q. Since b0 ∈ L〈τ〉\Q and
[L〈τ〉 : Q] = 3, b0 is a root of an irreducible cubic polynomial

p(x) = x3 − ax2 + bx − c

over Q.

Since the roots of p(x) are b0, σ(b0) and σ2(b0),
a = b0 + σ(b0) + σ2(b0) and b = m. Since [L〈σ〉 : Q] = 2, we write
a1 = v + w

√
d for v ,w , d ∈ Q, d 6= 0. We have τ(

√
d) = −

√
d .
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From X = Y = Z = 0 we obtain the system of equations

2a0b0 + 2vσ(b0) + 2vσ2(b0) = 0

2a0σ(b0) + 2vb0 + 2vσ2(b0) = 0 (1)

2a0σ
2(b0) + 2vb0 + 2vσ(b0) = 0,

which in matrix form appears as 2Az = 0, where
z = (b0, σ(b0), σ2(b0))t , and

A =

a0 v v
v a0 v
v v a0

 .
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Now, det(A) = (2v + a0)(v − a0)2. If A is invertible, then b0 = 0,
which is impossible since b0 6∈ Q. So, either a0 = −2v , or a0 = v .
Note: if w = 0, then a1 = v . We now have four possibilities to
consider.

(i) a0 = −2v and w = 0 (so that a1 = v). From U = V = 0, we
obtain (−2a1)2 + 2a21 + n = 0 and 2(−2a1)a1 + a21 + m = 0, so
that 6a21 + n = 0 and −3a21 + m = 0. It follows that

0 = 2m + n = (b0 + σ(b0) + σ2(b0))2,

whence, b0 + σ(b0) + σ2(b0) = 0, hence a = 0.

Moreover, from (1),

2(−2a1)b0 + 2a1σ(b0) + 2a1σ
2(b0)

= −4a1b0 + 2a1σ(b0) + 2a1σ
2(b0) = 0,

and so, −6a1b0 = 0.

Robert G. Underwood Department of Mathematics and Computer Science Auburn University at Montgomery Montgomery, AlabamaThe Structure of the Greither-Pareigis Hopf Algebra (Lλ(S3))
S3



Thus either a1 = 0 or b0 = 0. But the latter case is not possible,
and so, a1 = 0. Now, since V = 0, m = b = 0. It follows that b0
is a root of the irreducible polynomial x3 − c . Consequently, L is
the splitting field of x3 − c over Q.

(ii) a0 = v and w = 0. From U = V = 0, we obtain
a21 + 2a21 + n = 0 and 2a21 + a21 + m = 0. Hence

9a21 + 2m + n = 9a21 + (b0 + σ(b0) + σ2(b0))2 = 0,

so a0 = a1 = 0 and b0 + σ(b0) + σ2(b0) = 0. Again, this yields
m = 0, and b0 is a root of the irreducible polynomial x3 − c .
Hence, L is the splitting field of x3 − c over Q.
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(iii) a0 = −2v and w 6= 0. From V = W = 0 we obtain

2(−2v)(v+w
√
d)+(v−w

√
d)2 = 2(−2v)(v−w

√
d)+(v+w

√
d)2,

thus 12vw
√
d = 0. And so, v = 0, thus a0 = 0. Since

U = V = W = 0, 2a1τ(a1) + n = 0, τ(a21) + m = 0, and
a21 + m = 0. Consequently,

2a1τ(a1) + τ(a21) + a21 + 2m + n

= (a1 + τ(a1))2 + (b0 + σ(b0) + σ2(b0))2 = 0,

and so, b0 + σ(b0) + σ2(b0) = 0. Thus b0 is a root of the cubic
p(x) = x3 + bx − c , b = m.
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Let D = −4b3 − 27c2 be the discriminant of p(x). From [4,
Proposition 4.59(i)], L〈σ〉 = Q(

√
D).

Since w 6= 0, a1 ∈ L〈σ〉\Q, with a21 + b = 0. Consequently,
L〈σ〉 = Q(

√
−b). Thus Q(

√
D) = Q(

√
−b), and so, D = −bq2 for

some q ∈ Q.

(iv) a0 = v and w 6= 0. From U = V = 0, we obtain
3v2 − 2w2d + n = 0 and 3v2 + w2d + m = 0. Hence v = a0 = 0
and b0 + σ(b0) + σ2(b0) = 0. Thus b0 is a root of x3 + bx − c ,
b = m, with a21 + m = 0. As above, D = −bq2 for some q ∈ Q.

So we have shown the following: if H contains a non-trivial
element h with h2 = 0, then L is the splitting field of an irreducible
cubic x3 + bx − c where either b = 0, or − 1

bD is a square in Q. 2
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We now prove Proposition 1.

Proposition 1. Let L/Q be a Galois extension with group S3. Let
H = (Lλ(S3))S3 be the Greither-Pareigis Hopf algebra determined
by the regular subgroup λ(S3) of Perm(S3) normalized by λ(S3).
Then

H ∼= Q×Q×Mat2(Q)

if and only if L is the splitting field of an irreducible cubic
x3 + bx − c over Q where either b = 0, or − 1

bD is a square in Q.

Proof. Suppose L/Q is a Galois extension with group S3, with L
the splitting field of an irreducible cubic x3 + bx − c over Q where
either b = 0, or − 1

bD is a square in Q. Let H = (Lλ(S3))S3 be the
Greither-Pareigis Hopf algebra determined by the regular subgroup
λ(S3) ≤ Perm(S3) normalized by λ(S3).
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By [5, Proposition 19], H is left semisimple with decomposition

H ∼= Matn1(D1)×Matn2(D2)× · · · ×Matnl (Dl),

where the ni are integers, and the Di are division algebras over Q.

We have L⊗Q H ∼= LS3, thus dimL((L⊗Q H)ab) = 2, by [5,
Lemma 8]. Now, by [5, Lemma 7], dimQ((H)ab) = 2. Thus the
decomposition is

H ∼= Q × R,

where Q is a 2-dimensional commutative Q-algebra, and R is a
4-dimensional non-commutative Q-algebra.
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To determine Q, note that

Hab = ((Lλ(S3))S3)ab = ((Lλ(S3))ab)S3 ∼= (LC2)S3 = QC2,

since [S3, S3] is a normal subgroup of S3, that is,
[S3,S3]S3 = [S3,S3]. Thus, Q = Q×Q, so that

H ∼= Q×Q× R.

So it remains to determine R. To this end, note that one of
following cases holds:

(1) R = S × T , where S , T are division algebras with
dimQ(S) = dimQ(T ) = 2,

(2) R = S , where S is a division algebra with dimQ(S) = 4,

(3) R = Mat2(Q).
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Assume b = 0. Then L is the splitting field of the irreducible cubic
x3 − c over Q.

Let ω denote a primitive 3rd root of unity and let b0 = 3
√
c . Then

L = Q(b0, ω), and L is Galois with group S3 = 〈σ, τ〉 with
σ3 = τ2 = 1, τσ = σ2τ . The Galois action is given as
σ(b0) = ωb0, σ(ω) = ω, τ(b0) = b0, τ(ω) = ω2.

Let a0 = a1 = 0. As one check, H contains the non-zero nilpotent
element

h = b0τ + σ(b0)τσ + σ2(b0)τσ2

of index 2.
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Next, assume that − 1
bD is a square in Q. (Necessarily, b 6= 0 and

b is not a square in Q.)

Let a0 = 0, a1 =
√
−b. By [2, Theorem 2.6], L = Q(b0,

√
D),

where b0 is a root of x3 + bx − c . Thus L = Q(b0,
√
−b).

Now, H contains the non-zero nilpotent element

h =
√
−bσ −

√
−bσ2 + b0τ + σ(b0)τσ + σ2(b0)τσ2

of index 2. Indeed, as one can check,
U = V = W = X = Y = Z = 0, and so h2 = 0, h 6= 0.
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Thus, in either case (b = 0 or − 1
bD is a square in Q), H contains

a non-trivial nilpotent element of index 2, and this shows that
cases (1) and (2) above are impossible: For if h = (c1, c2, c3, c4)
for c1, c2 ∈ Q, c3 ∈ S , c4 ∈ T , as in (1), then

0 = h2 = (c21 , c
2
2 , c

2
3 , c

2
4 ) = (0, 0, 0, 0),

thus h = 0. A similar agrument shows that (2) cannot happen
either. Thus

H ∼= Q×Q×Mat2(Q).
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For the converse of Proposition 1, suppose that L/Q is Galois with
group S3 with H = (Lλ(S3))S3 and

H ∼= Q×Q×Mat2(Q).

Then H contains a non-trivial nilpotent element of index 2,
namely, the element in H corresponding to(

0, 0,

(
0 1
0 0

))
in Q×Q×Mat2(Q). Thus by Lemma 2, L is the splitting field of
an irreducible cubic x3 + bx − c where either b = 0, or − 1

bD is a
square in Q. 2
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3. A Class of Splitting Fields

In this section we construct a collection of irreducible cubics
x3 + bx − c in which − 1

bD is a square in Q.

Let p(x) = x3 + bx − b2, b ∈ Q. Then D = −4b3 − 27b4. We
require that

−4b3 − 27b4

−b
= q2

for some q ∈ Q. Thus b2(4 + 27b) = q2, and so,
4 + 27b = (q/b)2.

We seek z so that z2 = 4 + 27b. Now, b = (z2 − 4)/27, hence
z2 ≡ 4 mod 27, that is, we want 4 to be a quadratic residue mod
27.
Certainly, this happens if z = 25. Now, b = (252 − 4)/27 = 23,
and q2 = (23)2(4 + 27 · 23) = 330625, so that q = 575.
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Now, put
p(x) = x3 + 23x − 529.

As one can check, p(x) is irreducible over Q with

−1

b
D =

−4 · 233 − 27 · (−529)2

−23
= 330625 = (575)2.

The splitting field of p(x) is L = Q(b0,
√
−23), where b0 is a root

of p(x). Moreover, H = (Lλ(S3))S3 contains the non-trivial
nilpotent index 2 element

h =
√
−23σ −

√
−23σ2 + b0τ + σ(b0)τσ + σ2(b0)τσ2,

hence
H ∼= Q×Q×Mat2(Q)

as Q-algebras.
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4. An Application

Proposition 3. Suppose that L/Q is a Galois extension with group
S3. Then QS3 and H = (Lλ(S3))S3 have the same number of
Wedderburn-Artin components.

Proof. See [3, Corollary 4.9].

Now, we have already established that QS3 ∼= Q×Q×Mat2(Q),
and so, H must have 3 Wedderburn-Artin components, two of
which are copies of Q. Thus

H ∼= Q×Q× R

where either R = Mat2(Q), or R is some 4-dimensional
non-commutative division algebra over Q.
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But if L/Q is the splitting field of a cubic other than one of the
form described in Proposition 1 (for instance x3 − 4x + 1), then

H = (Lλ(S3))S3 ∼= Q×Q× R,

where R is some 4-dimensional division algebra over Q.
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