The Structure of the Greither-Pareigis Hopf Algebra $\left(L \lambda\left(S_{3}\right)\right)^{S_{3}}$

Robert G. Underwood

Department of Mathematics and Computer Science
Auburn University at Montgomery
Montgomery, Alabama

May 24, 2017

1. Introduction

Let L / \mathbb{Q} be a Galois extension with group S_{3}. Let $H=\left(L \lambda\left(S_{3}\right)\right)^{S_{3}}$ be the Greither-Pareigis Hopf algebra determined by the regular subgroup $\lambda\left(S_{3}\right) \leq \operatorname{Perm}\left(S_{3}\right)$ normalized by $\lambda\left(S_{3}\right)$. In this talk we prove the following proposition.

Proposition 1.

$$
H \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

if and only if L is the splitting field of an irreducible cubic $x^{3}+b x-c$ where either $b=0$, or $-\frac{1}{b} \mathcal{D}$ is a square in \mathbb{Q} ($\mathcal{D}=-4 b^{3}-27 c^{2}$ is the discriminant).

2. Proof of Proposition 1

We first need a lemma.
Lemma 2. Let L / \mathbb{Q} be a Galois extension with group S_{3}. Let $H=\left(L \lambda\left(S_{3}\right)\right)^{S_{3}}$ be the Greither-Pareigis Hopf algebra determined by the regular subgroup $\lambda\left(S_{3}\right)$. If H contains a non-trivial nilpotent element of index 2 , then L is the splitting field of an irreducible cubic $x^{3}+b x-c$ where either $b=0$, or $-\frac{1}{b} \mathcal{D}$ is a square in \mathbb{Q}.

Proof. By [1, Example 6.12], H consists of elements of the form

$$
h=a_{0}+a_{1} \sigma+\tau\left(a_{1}\right) \sigma^{2}+b_{0} \tau+\sigma\left(b_{0}\right) \tau \sigma+\sigma^{2}\left(b_{0}\right) \tau \sigma^{2}
$$

where $a_{0} \in \mathbb{Q}, a_{1} \in L^{\langle\sigma\rangle}$, and $b_{0} \in L^{\langle\tau\rangle}$.

By direct computation,

$$
h^{2}=U+V \sigma+W \sigma^{2}+X \tau+Y \tau \sigma+Z \tau \sigma^{2}
$$

where

$$
\begin{aligned}
U & =a_{0}^{2}+2 a_{1} \tau\left(a_{1}\right)+n \\
V & =2 a_{0} a_{1}+\tau\left(a_{1}^{2}\right)+m \\
W & =2 a_{0} \tau\left(a_{1}\right)+a_{1}^{2}+m \\
X & =2 a_{0} b_{0}+\left(a_{1}+\tau\left(a_{1}\right)\right) \sigma\left(b_{0}\right)+\left(a_{1}+\tau\left(a_{1}\right)\right) \sigma^{2}\left(b_{0}\right) \\
Y & =2 a_{0} \sigma\left(b_{0}\right)+\left(a_{1}+\tau\left(a_{1}\right)\right) b_{0}+\left(a_{1}+\tau\left(a_{1}\right)\right) \sigma^{2}\left(b_{0}\right) \\
Z & =2 a_{0} \sigma^{2}\left(b_{0}\right)+\left(a_{1}+\tau\left(a_{1}\right)\right) b_{0}+\left(a_{1}+\tau\left(a_{1}\right)\right) \sigma\left(b_{0}\right),
\end{aligned}
$$

with

$$
\begin{aligned}
m & =b_{0} \sigma\left(b_{0}\right)+\sigma\left(b_{0}\right) \sigma^{2}\left(b_{0}\right)+b_{0} \sigma^{2}\left(b_{0}\right) \\
n & =b_{0}^{2}+\sigma\left(b_{0}^{2}\right)+\sigma^{2}\left(b_{0}^{2}\right) \\
2 m+n & =\left(b_{0}+\sigma\left(b_{0}\right)+\sigma^{2}\left(b_{0}\right)\right)^{2}
\end{aligned}
$$

Now suppose that H contains an element

$$
h=a_{0}+a_{1} \sigma+\tau\left(a_{1}\right) \sigma^{2}+b_{0} \tau+\sigma\left(b_{0}\right) \tau \sigma+\sigma^{2}\left(b_{0}\right) \tau \sigma^{2}
$$

with $h^{2}=0, h \neq 0$, for some $a_{0} \in \mathbb{Q}, a_{1} \in L^{\langle\sigma\rangle}$, and $b_{0} \in L^{\langle\tau\rangle}$. Since H is flat over \mathbb{Q} and $\left\{1, \sigma, \sigma^{2}, \tau, \tau \sigma, \tau \sigma^{2}\right\}$ is an L-basis for $L S_{3}, U=V=W=X=Y=Z=0$.

Case I. $a_{0} \in \mathbb{Q}, a_{1} \in L^{\langle\sigma\rangle}, b_{0} \in \mathbb{Q}$. In this case, we have two possibilites: $a_{1} \in \mathbb{Q}$ or $a_{1} \in L^{\langle\sigma\rangle} \backslash \mathbb{Q}$.
(i) $a_{1} \in \mathbb{Q}$. From $U=0$, we obtain $a_{0}^{2}+2 a_{1}^{2}+3 b_{0}^{2}=0$, and so, $a_{0}=a_{1}=b_{0}=0$. Thus $h=0$, and so, (i) is not possible.
(ii) $a_{1} \in L^{\langle\sigma\rangle} \backslash \mathbb{Q}$. From $U=V=0$, we obtain

$$
\begin{aligned}
& a_{0}^{2}+2 a_{1} \tau\left(a_{1}\right)+3 b_{0}^{2}=0 \\
& 2 a_{0} a_{1}+\tau\left(a_{1}^{2}\right)+3 b_{0}^{2}=0 .
\end{aligned}
$$

Since $\left[L^{\langle\sigma\rangle}: \mathbb{Q}\right]=2$ and $a_{1} \in L^{\langle\sigma\rangle} \backslash \mathbb{Q}, a_{1}=v+w \sqrt{d}$, where $v, w, d \in \mathbb{Q}$ with $w \neq 0, d \neq 0$. We have $\tau(\sqrt{d})=-\sqrt{d}$.

Now, $a_{0}^{2}+2 a_{1} \tau\left(a_{1}\right)=2 a_{0} a_{1}+\tau\left(a_{1}^{2}\right)$, hence

$$
a_{0}^{2}+2(v+w \sqrt{d})(v-w \sqrt{d})=2 a_{0}(v+w \sqrt{d})+(v-w \sqrt{d})^{2},
$$

thus

$$
a_{0}^{2}+2 v^{2}-2 w^{2} d=2 a_{0} v+2 a_{0} w \sqrt{d}+v^{2}-2 v w \sqrt{d}+w^{2} d,
$$

and so, $2 a_{0} w=2 v w$, and $a_{0}^{2}+2 v^{2}-2 w^{2} d=2 a_{0} v+v^{2}+w^{2} d$.

Consequently, $a_{0}=v$, and so, $3 w^{2} d=0$, which is not possible. So (ii) cannot happen.

Case II. $a_{0} \in \mathbb{Q}, a_{1} \in L^{\langle\sigma\rangle}, b_{0} \in L^{\langle\tau\rangle} \backslash \mathbb{Q}$. Since $b_{0} \in L^{\langle\tau\rangle} \backslash \mathbb{Q}$ and $\left[L^{\langle\tau\rangle}: \mathbb{Q}\right]=3, b_{0}$ is a root of an irreducible cubic polynomial

$$
p(x)=x^{3}-a x^{2}+b x-c
$$

over \mathbb{Q}.
Since the roots of $p(x)$ are $b_{0}, \sigma\left(b_{0}\right)$ and $\sigma^{2}\left(b_{0}\right)$, $a=b_{0}+\sigma\left(b_{0}\right)+\sigma^{2}\left(b_{0}\right)$ and $b=m$. Since $\left[L^{\langle\sigma\rangle}: \mathbb{Q}\right]=2$, we write $a_{1}=v+w \sqrt{d}$ for $v, w, d \in \mathbb{Q}, d \neq 0$. We have $\tau(\sqrt{d})=-\sqrt{d}$.

From $X=Y=Z=0$ we obtain the system of equations

$$
\begin{align*}
2 a_{0} b_{0}+2 v \sigma\left(b_{0}\right)+2 v \sigma^{2}\left(b_{0}\right) & =0 \\
2 a_{0} \sigma\left(b_{0}\right)+2 v b_{0}+2 v \sigma^{2}\left(b_{0}\right) & =0 \tag{1}\\
2 a_{0} \sigma^{2}\left(b_{0}\right)+2 v b_{0}+2 v \sigma\left(b_{0}\right) & =0,
\end{align*}
$$

which in matrix form appears as $2 A z=0$, where $z=\left(b_{0}, \sigma\left(b_{0}\right), \sigma^{2}\left(b_{0}\right)\right)^{t}$, and

$$
A=\left(\begin{array}{ccc}
a_{0} & v & v \\
v & a_{0} & v \\
v & v & a_{0}
\end{array}\right) .
$$

Now, $\operatorname{det}(A)=\left(2 v+a_{0}\right)\left(v-a_{0}\right)^{2}$. If A is invertible, then $b_{0}=0$, which is impossible since $b_{0} \notin \mathbb{Q}$. So, either $a_{0}=-2 v$, or $a_{0}=v$. Note: if $w=0$, then $a_{1}=v$. We now have four possibilities to consider.
(i) $a_{0}=-2 v$ and $w=0$ (so that $a_{1}=v$). From $U=V=0$, we obtain $\left(-2 a_{1}\right)^{2}+2 a_{1}^{2}+n=0$ and $2\left(-2 a_{1}\right) a_{1}+a_{1}^{2}+m=0$, so that $6 a_{1}^{2}+n=0$ and $-3 a_{1}^{2}+m=0$. It follows that

$$
0=2 m+n=\left(b_{0}+\sigma\left(b_{0}\right)+\sigma^{2}\left(b_{0}\right)\right)^{2}
$$

whence, $b_{0}+\sigma\left(b_{0}\right)+\sigma^{2}\left(b_{0}\right)=0$, hence $a=0$.
Moreover, from (1),

$$
\begin{aligned}
& 2\left(-2 a_{1}\right) b_{0}+2 a_{1} \sigma\left(b_{0}\right)+2 a_{1} \sigma^{2}\left(b_{0}\right) \\
= & -4 a_{1} b_{0}+2 a_{1} \sigma\left(b_{0}\right)+2 a_{1} \sigma^{2}\left(b_{0}\right)=0,
\end{aligned}
$$

and so, $-6 a_{1} b_{0}=0$.

Thus either $a_{1}=0$ or $b_{0}=0$. But the latter case is not possible, and so, $a_{1}=0$. Now, since $V=0, m=b=0$. It follows that b_{0} is a root of the irreducible polynomial $x^{3}-c$. Consequently, L is the splitting field of $x^{3}-c$ over \mathbb{Q}.
(ii) $a_{0}=v$ and $w=0$. From $U=V=0$, we obtain $a_{1}^{2}+2 a_{1}^{2}+n=0$ and $2 a_{1}^{2}+a_{1}^{2}+m=0$. Hence

$$
9 a_{1}^{2}+2 m+n=9 a_{1}^{2}+\left(b_{0}+\sigma\left(b_{0}\right)+\sigma^{2}\left(b_{0}\right)\right)^{2}=0
$$

so $a_{0}=a_{1}=0$ and $b_{0}+\sigma\left(b_{0}\right)+\sigma^{2}\left(b_{0}\right)=0$. Again, this yields $m=0$, and b_{0} is a root of the irreducible polynomial $x^{3}-c$.
Hence, L is the splitting field of $x^{3}-c$ over \mathbb{Q}.
(iii) $a_{0}=-2 v$ and $w \neq 0$. From $V=W=0$ we obtain
$2(-2 v)(v+w \sqrt{d})+(v-w \sqrt{d})^{2}=2(-2 v)(v-w \sqrt{d})+(v+w \sqrt{d})^{2}$,
thus $12 v w \sqrt{d}=0$. And so, $v=0$, thus $a_{0}=0$. Since $U=V=W=0,2 a_{1} \tau\left(a_{1}\right)+n=0, \tau\left(a_{1}^{2}\right)+m=0$, and $a_{1}^{2}+m=0$. Consequently,

$$
\begin{gathered}
2 a_{1} \tau\left(a_{1}\right)+\tau\left(a_{1}^{2}\right)+a_{1}^{2}+2 m+n \\
=\left(a_{1}+\tau\left(a_{1}\right)\right)^{2}+\left(b_{0}+\sigma\left(b_{0}\right)+\sigma^{2}\left(b_{0}\right)\right)^{2}=0,
\end{gathered}
$$

and so, $b_{0}+\sigma\left(b_{0}\right)+\sigma^{2}\left(b_{0}\right)=0$. Thus b_{0} is a root of the cubic $p(x)=x^{3}+b x-c, b=m$.

Let $\mathcal{D}=-4 b^{3}-27 c^{2}$ be the discriminant of $p(x)$. From [4, Proposition 4.59(i)], $L^{\langle\sigma\rangle}=\mathbb{Q}(\sqrt{\mathcal{D}})$.

Since $w \neq 0, a_{1} \in L^{\langle\sigma\rangle} \backslash \mathbb{Q}$, with $a_{1}^{2}+b=0$. Consequently, $L^{\langle\sigma\rangle}=\mathbb{Q}(\sqrt{-b})$. Thus $\mathbb{Q}(\sqrt{\mathcal{D}})=\mathbb{Q}(\sqrt{-b})$, and so, $\mathcal{D}=-b q^{2}$ for some $q \in \mathbb{Q}$.
(iv) $a_{0}=v$ and $w \neq 0$. From $U=V=0$, we obtain $3 v^{2}-2 w^{2} d+n=0$ and $3 v^{2}+w^{2} d+m=0$. Hence $v=a_{0}=0$ and $b_{0}+\sigma\left(b_{0}\right)+\sigma^{2}\left(b_{0}\right)=0$. Thus b_{0} is a root of $x^{3}+b x-c$, $b=m$, with $a_{1}^{2}+m=0$. As above, $\mathcal{D}=-b q^{2}$ for some $q \in \mathbb{Q}$.

So we have shown the following: if H contains a non-trivial element h with $h^{2}=0$, then L is the splitting field of an irreducible cubic $x^{3}+b x-c$ where either $b=0$, or $-\frac{1}{b} \mathcal{D}$ is a square in \mathbb{Q}.

We now prove Proposition 1.
Proposition 1. Let L / \mathbb{Q} be a Galois extension with group S_{3}. Let $H=\left(L \lambda\left(S_{3}\right)\right)^{S_{3}}$ be the Greither-Pareigis Hopf algebra determined by the regular subgroup $\lambda\left(S_{3}\right)$ of $\operatorname{Perm}\left(S_{3}\right)$ normalized by $\lambda\left(S_{3}\right)$. Then

$$
H \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

if and only if L is the splitting field of an irreducible cubic $x^{3}+b x-c$ over \mathbb{Q} where either $b=0$, or $-\frac{1}{b} \mathcal{D}$ is a square in \mathbb{Q}.

Proof. Suppose L / \mathbb{Q} is a Galois extension with group S_{3}, with L the splitting field of an irreducible cubic $x^{3}+b x-c$ over \mathbb{Q} where either $b=0$, or $-\frac{1}{b} \mathcal{D}$ is a square in \mathbb{Q}. Let $H=\left(L \lambda\left(S_{3}\right)\right)^{S_{3}}$ be the Greither-Pareigis Hopf algebra determined by the regular subgroup $\lambda\left(S_{3}\right) \leq \operatorname{Perm}\left(S_{3}\right)$ normalized by $\lambda\left(S_{3}\right)$.

By [5, Proposition 19], H is left semisimple with decomposition

$$
H \cong \operatorname{Mat}_{n_{1}}\left(D_{1}\right) \times \operatorname{Mat}_{n_{2}}\left(D_{2}\right) \times \cdots \times \operatorname{Mat}_{n_{l}}\left(D_{l}\right)
$$

where the n_{i} are integers, and the D_{i} are division algebras over \mathbb{Q}.
We have $L \otimes_{\mathbb{Q}} H \cong L S_{3}$, thus $\operatorname{dim}_{L}\left(\left(L \otimes_{\mathbb{Q}} H\right)_{a b}\right)=2$, by $[5$, Lemma 8]. Now, by [5, Lemma 7], $\operatorname{dim}_{\mathbb{Q}}\left((H)_{a b}\right)=2$. Thus the decomposition is

$$
H \cong Q \times R
$$

where Q is a 2-dimensional commutative \mathbb{Q}-algebra, and R is a 4-dimensional non-commutative \mathbb{Q}-algebra.

To determine Q, note that

$$
H_{a b}=\left(\left(L \lambda\left(S_{3}\right)\right)^{S_{3}}\right)_{a b}=\left(\left(L \lambda\left(S_{3}\right)\right)_{a b}\right)^{S_{3}} \cong\left(L C_{2}\right)^{S_{3}}=\mathbb{Q} C_{2},
$$

since $\left[S_{3}, S_{3}\right]$ is a normal subgroup of S_{3}, that is, $\left[S_{3}, S_{3}\right]^{S_{3}}=\left[S_{3}, S_{3}\right]$. Thus, $Q=\mathbb{Q} \times \mathbb{Q}$, so that

$$
H \cong \mathbb{Q} \times \mathbb{Q} \times R
$$

So it remains to determine R. To this end, note that one of following cases holds:
(1) $R=S \times T$, where S, T are division algebras with $\operatorname{dim}_{\mathbb{Q}}(S)=\operatorname{dim}_{\mathbb{Q}}(T)=2$,
(2) $R=S$, where S is a division algebra with $\operatorname{dim}_{\mathbb{Q}}(S)=4$,
(3) $R=\operatorname{Mat}_{2}(\mathbb{Q})$.

Assume $b=0$. Then L is the splitting field of the irreducible cubic $x^{3}-c$ over \mathbb{Q}.

Let ω denote a primitive 3 rd root of unity and let $b_{0}=\sqrt[3]{c}$. Then $L=\mathbb{Q}\left(b_{0}, \omega\right)$, and L is Galois with group $S_{3}=\langle\sigma, \tau\rangle$ with $\sigma^{3}=\tau^{2}=1, \tau \sigma=\sigma^{2} \tau$. The Galois action is given as $\sigma\left(b_{0}\right)=\omega b_{0}, \sigma(\omega)=\omega, \tau\left(b_{0}\right)=b_{0}, \tau(\omega)=\omega^{2}$.

Let $a_{0}=a_{1}=0$. As one check, H contains the non-zero nilpotent element

$$
h=b_{0} \tau+\sigma\left(b_{0}\right) \tau \sigma+\sigma^{2}\left(b_{0}\right) \tau \sigma^{2}
$$

of index 2.

Next, assume that $-\frac{1}{b} \mathcal{D}$ is a square in \mathbb{Q}. (Necessarily, $b \neq 0$ and b is not a square in \mathbb{Q}.)

Let $a_{0}=0, a_{1}=\sqrt{-b}$. By [2, Theorem 2.6], $L=\mathbb{Q}\left(b_{0}, \sqrt{\mathcal{D}}\right)$, where b_{0} is a root of $x^{3}+b x-c$. Thus $L=\mathbb{Q}\left(b_{0}, \sqrt{-b}\right)$.

Now, H contains the non-zero nilpotent element

$$
h=\sqrt{-b} \sigma-\sqrt{-b} \sigma^{2}+b_{0} \tau+\sigma\left(b_{0}\right) \tau \sigma+\sigma^{2}\left(b_{0}\right) \tau \sigma^{2}
$$

of index 2. Indeed, as one can check, $U=V=W=X=Y=Z=0$, and so $h^{2}=0, h \neq 0$.

Thus, in either case ($b=0$ or $-\frac{1}{b} \mathcal{D}$ is a square in \mathbb{Q}), H contains a non-trivial nilpotent element of index 2 , and this shows that cases (1) and (2) above are impossible: For if $h=\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$ for $c_{1}, c_{2} \in \mathbb{Q}, c_{3} \in S, c_{4} \in T$, as in (1), then

$$
0=h^{2}=\left(c_{1}^{2}, c_{2}^{2}, c_{3}^{2}, c_{4}^{2}\right)=(0,0,0,0),
$$

thus $h=0$. A similar agrument shows that (2) cannot happen either. Thus

$$
H \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

For the converse of Proposition 1, suppose that L / \mathbb{Q} is Galois with group S_{3} with $H=\left(L \lambda\left(S_{3}\right)\right)^{S_{3}}$ and

$$
H \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

Then H contains a non-trivial nilpotent element of index 2, namely, the element in H corresponding to

$$
\left(0,0,\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)
$$

in $\mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})$. Thus by Lemma $2, L$ is the splitting field of an irreducible cubic $x^{3}+b x-c$ where either $b=0$, or $-\frac{1}{b} \mathcal{D}$ is a square in \mathbb{Q}.

3. A Class of Splitting Fields

In this section we construct a collection of irreducible cubics $x^{3}+b x-c$ in which $-\frac{1}{b} \mathcal{D}$ is a square in \mathbb{Q}.

Let $p(x)=x^{3}+b x-b^{2}, b \in \mathbb{Q}$. Then $\mathcal{D}=-4 b^{3}-27 b^{4}$. We require that

$$
\frac{-4 b^{3}-27 b^{4}}{-b}=q^{2}
$$

for some $q \in \mathbb{Q}$. Thus $b^{2}(4+27 b)=q^{2}$, and so, $4+27 b=(q / b)^{2}$.

We seek z so that $z^{2}=4+27 b$. Now, $b=\left(z^{2}-4\right) / 27$, hence $z^{2} \equiv 4 \bmod 27$, that is, we want 4 to be a quadratic residue mod 27.

Certainly, this happens if $z=25$. Now, $b=\left(25^{2}-4\right) / 27=23$, and $q^{2}=(23)^{2}(4+27 \cdot 23)=330625$, so that $q=575$.

Now, put

$$
p(x)=x^{3}+23 x-529
$$

As one can check, $p(x)$ is irreducible over \mathbb{Q} with

$$
-\frac{1}{b} \mathcal{D}=\frac{-4 \cdot 23^{3}-27 \cdot(-529)^{2}}{-23}=330625=(575)^{2}
$$

The splitting field of $p(x)$ is $L=\mathbb{Q}\left(b_{0}, \sqrt{-23}\right)$, where b_{0} is a root of $p(x)$. Moreover, $H=\left(L \lambda\left(S_{3}\right)\right)^{S_{3}}$ contains the non-trivial nilpotent index 2 element

$$
h=\sqrt{-23} \sigma-\sqrt{-23} \sigma^{2}+b_{0} \tau+\sigma\left(b_{0}\right) \tau \sigma+\sigma^{2}\left(b_{0}\right) \tau \sigma^{2}
$$

hence

$$
H \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

as \mathbb{Q}-algebras.

4. An Application

Proposition 3. Suppose that L / \mathbb{Q} is a Galois extension with group S_{3}. Then $\mathbb{Q} S_{3}$ and $H=\left(L \lambda\left(S_{3}\right)\right)^{S_{3}}$ have the same number of Wedderburn-Artin components.

Proof. See [3, Corollary 4.9].
Now, we have already established that $\mathbb{Q} S_{3} \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})$, and so, H must have 3 Wedderburn-Artin components, two of which are copies of \mathbb{Q}. Thus

$$
H \cong \mathbb{Q} \times \mathbb{Q} \times R
$$

where either $R=\operatorname{Mat}_{2}(\mathbb{Q})$, or R is some 4-dimensional non-commutative division algebra over \mathbb{Q}.

But if L / \mathbb{Q} is the splitting field of a cubic other than one of the form described in Proposition 1 (for instance $x^{3}-4 x+1$), then

$$
H=\left(L \lambda\left(S_{3}\right)\right)^{S_{3}} \cong \mathbb{Q} \times \mathbb{Q} \times R,
$$

where R is some 4-dimensional division algebra over \mathbb{Q}.

围 L．N．Childs，Taming Wild Extensions：Hopf Algebras and Local Galois Module Theory，AMS：Mathematical Surveys and Monographs，80， 2000.

國 K．Conrad，Galois groups of cubics and quartics（not in characteristic 2），http：／／www．math．uconn．edu／ ～kconrad／blurbs／galoistheory／cubicquartic．pdf
囦 A．Koch，T．Kohl，P．Truman，R．Underwood，On the Structure of Hopf algebras acting on separable extensions， preprint，date：April 6， 2017.

围 J．Rotman，Advanced Modern Algebra，Pearson，New Jersey， 2002.

國 R．Underwood，The Structure of Greither－Pareigis Hopf Algebras，presented at Omaha 2017，University of Nebraska－Omaha，NE，May， 2017.

